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J. Phys. A: Math. Gen. 15 (1982) L597-LS99. Printed in Great Britain 

L E m R  TO THE EDITOR 

Application of directed lattice animal theory to river 
networks 

J E Green and M A Moore 
Department of Theoretical Physics, The Schuster Laboratory, The University, Manchester 
M13 9PL, UK 

Received 9 August 1982 

Abstract. It is shown that the theory of directed lattice animals is a good candidate for 
determining the exponents which describe river networks. 

In this Letter we investigate the possible connection between the relation of stream 
length to drainage area of river networks (see for instance Hack 1957) and the theory 
of directed lattice animals. We begin with a brief description of directed lattice animals 
and then describe how this can be related to the properties of river networks. 

There have been several recent studies of directed lattice animals (Day and 
Lubensky 1982, Dhar et a1 1982, Lubensky and Vannimenus 1982, Nadal et a1 1982, 
Redner and Coniglio 1982, Redner and Yang 1982) and there are good results for 
critical exponents particularly in two dimensions. We are interested in single root 
bond lattice animals, i.e. finite clusters of directed bonds on a lattice which grow from 
a single point. In figure 1 we show an animal of this type on a square lattice. The 
bonds are allowed only to point either to the right or up and it can easily be seen 
that the animal grows preferentially along the (1, 1) direction. If we define the length 
of the cluster along the (1,l)  direction to be (11 and the width to be t1 then as the 
total number of bonds N in the animal becomes large 

511 - N L-NVL,  (1) 
for a typical animal. Another interesting length in the problem is that of the longest 
directed path through the bonds L (see figure 1). For a square lattice we can easily 
see that L is given by 

L = J2511 (2) 
which implies that 

L-N". (3) 
How may directed lattice animal calculations apply to river networks? If we look 

again at figure 1 we see that for a large directed lattice animal, its shape would seem 
similar to that of a river network. In this case we identify the root of the lattice animal 
with the 'mouth' of the river and the preferred direction with the slope of the land. 
Figure 1 contains more 'islands' than is likely to be typical of river networks. However, 
directed lattice animals without any closed loops are in the same universality class as 
those of figure 1 (Nadal et a1 1982). 
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Figure 1. The diagram shows a (1, 1) directed lattice animal on the square lattice. The 
bold line shows the longest path and the broken lines show how the lengths 51, and are 
determined. The arrows point upstream from the mouth. 

Hack (1957) has made an extensive study of the relation between the length L of 
the longest river of a drainage region of area A .  The term length denotes the distance 
from a locality on a stream to the drainage divide at the head of the longest stream 
above it. The measurement was made generally on maps or aerial photographs with 
a map measure, along the stream channel and following meanders and bends; but in 
a few drainage basins it was made by tape traverse. The area A refers to the drainage 
area above the particular locality, including the drainage basin of the principal stream 
and of all the tributaries which enter it above the locality. In practice, area was 
measured on topographic maps or in a few cases from aerial photographs, by means 
of a planimeter, Regardless of the geologic conditions, it was found that at least in 
the northeastern United States 

L -cAD’= (4) 

where L is the length in miles, A is the area in square miles and the exponent D = 1.2. 
(However, measurements of streams eroding bedrock areas in the Mingus Mountain 
quadrangle, Arizona, indicated that the exponent D might not be completely universal 
as there it was found to be 1.4.) The coefficient c in equation (4) averages at 1.4 but 
ranges between 1 and 2.5. It is certainly not universal as, for example, in sandstone 
areas it averages around 2. 

If the analogy between river networks and directed lattice animals is valid, then 
one can calculate D as follows. 

( 5 )  Area of basin A - [lleL - Nul1’”! , 

Length of longest stream L - N ”‘8 

which implies 

D = 2 V i , / ( V , i +  V-). 

Notice that for any model in which = vI, D would take its ‘natural’ value of unity. 
We have calculated D from a variety of the available sets of values for zq and v I  for 
two-dimensional lattice animals and the results are shown in table 1. The value of 
vL in two dimensions is believed to be exactly 4 (Lubensky and Vannimenus 1982, 
Nadal et a1 1982) and, therefore, the second three results should be more reliable. 
All these lie within the 1.2-1.4 range for river networks reported by Hack. Hack’s 
data was obtained for basins whose areas A ranged from 0.12 to 375 square miles. 
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Table 1. Values of D for two-dimensional lattice animals. 

1 1 4 

- 13 
16 Flory methods*b 16 

- 13 
Adapted Flory methodb I 16 

Mean field theory a I J 
1.18 

&-expansion' $+&E $ + & E  ~ ( l  --=E) = 1.27 for E = 5 
1.24 

Series datad 0.5 0.800 1.23 
Transfer matrix and phenomenological 
renormalisation" I K 1.28 

- 
4 1  

1 

1 

Measurement of real river networks' - - 1.2-1.4 

"Redner and Coniglio 1982 
bLubensky and Vannimenus 1982 
'Day and Lubensky 1982 
dRedner and Yang 1982 
eNadal et a1 1982 
'Hack 1957. 

Mandelbrot (1977) reports that for very large basins (area >lo4 km2) the Hack 
relation fails and D for such basins goes down to 1. Large basins tend to have smaller 
slopes so that 'directed' animals are less relevant and a crossover should take place 
to a non-directed (and, therefore, isotropic) animal with vll= vL and D = 1. 

It thus seems likely that (directed) lattice animals are a good candidate for describing 
a model of river networks. 

We should like to acknowledge useful discussions with Alan Bray. 
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